A Semi-Polar Grid Strategy for the Three-Dimensional Finite Element Simulation of Vowel-Vowel Sequences
نویسندگان
چکیده
Three-dimensional computational acoustic models need very detailed 3D vocal tract geometries to generate high quality sounds. Static geometries can be obtained from Magnetic Resonance Imaging (MRI), but it is not currently possible to capture dynamic MRI-based geometries with sufficient spatial and time resolution. One possible solution consists in interpolating between static geometries, but this is a complex task. We instead propose herein to use a semi-polar grid to extract 2D cross-sections from the static 3D geometries, and then interpolate them to obtain the vocal tract dynamics. Other approaches such as the adaptive grid have also been explored. In this method, cross-sections are defined perpendicular to the vocal tract midline, as typically done in 1D to obtain the vocal tract area functions. However, intersections between adjacent crosssections may occur during the interpolation process, especially when the vocal tract midline quickly changes its orientation. In contrast, the semi-polar grid prevents these intersections because the plane orientations are fixed over time. Finite element simulations of static vowels are first conducted, showing that 3D acoustic wave propagation is not significantly altered when the semi-polar grid is used instead of the adaptive grid. The vowel-vowel sequence [Ai] is finally simulated to demonstrate the method.
منابع مشابه
Synthesis of VV Utterances from Muscle Activation to Sound with a 3D Model
We propose a method to automatically generate deformable 3D vocal tract geometries from the surrounding structures in a biomechanical model. This allows us to couple 3D biomechanics and acoustics simulations. The basis of the simulations is muscle activation trajectories in the biomechanical model, which move the articulators to the desired articulatory positions. The muscle activation trajecto...
متن کاملNumerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method
n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...
متن کاملThe Effect of English Vowel-Recognition Training on Beginner and Advanced Iranian ESL Learners
This study was an attempt to investigate the effect of vowel-recognition training on beginner and advanced Iranian ESL learners. A total of 36 adult Iranian ESL learners (18 advanced and 18 beginners) who were students of various majors at Memorial University (MUN) were recruited for the study. Advanced participants had the experience of living in Canada for at least three years while beginners...
متن کاملModified Fixed Grid Finite Element Method to Solve 3D Elasticity Problems of Functionally Graded Materials
In the present paper, applicability of the modified fixed grid finite element method in solution of three dimensional elasticity problems of functionally graded materials is investigated. In the non-boundary-fitted meshes, the elements are not conforming to the domain boundaries and the boundary nodes which are used in the traditional finite element method for the application of boundary condit...
متن کاملComputational and Programming Aspects of Transition Elements in a Three-dimensional Finite Element Program
The performance of any finite element (FE) structural analysis is directly related to the global number of nodes and degrees of freedom (DOF) of the discretized structure and mesh distribution attributes. It is obvious that the appropriate numerical analysis needs finer elements in the zone of interest, e.g. zone of high stress concentration and intensity, and coarser elements for farther porti...
متن کامل